\qquad
\qquad
\qquad

Reteaching (continued)

Congruence in Overlapping Triangles

Separate and redraw the overlapping triangles. Identify the vertices.

1. $\triangle G L J$ and $\triangle H J L$

2. $\triangle M R P$ and $\triangle N Q S$

3. $\triangle F E D$ and $\triangle C D E$

Fill in the blanks for the two-column proof.
4. Given: $\angle A E G \cong \angle A F D, \overline{A E} \cong \overline{A F}, \overline{G E} \cong \overline{F D}$

Prove: $\triangle A F G \cong \triangle A E D$

Statements

1) $\angle A E G \cong \angle A F D, \overline{A E} \cong \overline{A F}, \overline{G E} \cong \overline{F D}$
2) $\xrightarrow{?} \triangle A E G \cong \triangle A F D$
3) $\overline{A G} \cong \overline{A D}, \angle G \cong \angle D$
4) ? $\overline{G E} \cong \overline{F D}$
5) $G E=F D$
6) $G F+F E=G E, F E+E D=F D$
7) $G F+F E=F E+E D$
8) $\xrightarrow{?} G F=E D$
9) $\xrightarrow{?} \triangle A F G \cong \triangle A E D$

Reasons

1) ? Given
2) SAS
3) ? CPCTC
4) Given
5) ? Def. of \cong
6) $\xrightarrow{?}$ Seg. Addition Post.
7) ? Substitution Property
8) Subtr. Prop. of Equality
9) ? SAS

Use the plan to write a two-column proof.

5. Given: $\angle P S R$ and $\angle P Q R$ are right angles, $\angle Q P R \cong \angle S R P$.

Prove: $\triangle S T R \cong \triangle Q T P$
Plan for Proof:

Prove $\triangle Q P R \cong \triangle S R P$ by AAS. Then use CPCTC and vertical angles to prove $\triangle S T R \cong \triangle Q T P$ by AAS.

Statements: 1) $\angle P S R$ and $\angle P Q R$ are rt. \angle;
$\angle Q P R \cong \angle S R P$;
2) $\angle P S R \cong \angle R Q P$;
3) $\overline{P R} \cong \overline{R P}$;
4) $\triangle Q P R \cong \triangle S R P$;
5) $\angle S T R \cong \angle Q T P$;
6) $\overline{P Q} \cong \overline{R S}$;
7) $\triangle S T R \cong \triangle Q T P$; Reasons:

1) Given; 2) Rt. \&s are congruent; 3) Refl. Prop. of \cong; 4) AAS; 5) Vert. 1 s are \cong; 6) $\mathrm{CPCTC} ; 7)$ AAS
\qquad Class \qquad Date \qquad

Reteaching

Congruence Transformations

Because rigid motions preserve distance and angle measure, the image of a rigid motion or composition of rigid motions is congruent to the preimage. Congruence can be defined by rigid motions as follows.

Two figures are congruent if and only if there is a sequence of one or more rigid motions that map one figure onto the other.

Because rigid motions map figures to congruent figures, rigid motions and compositions of rigid motions are also called congruence transformations. If two figures are congruent, you can find a congruence transformation that maps one figure to the other.

Problem

In the figure at the right, $\triangle P Q R \cong \triangle S T U$. What is a congruence transformation that maps $\triangle P Q R$ to $\triangle S T U$?
$\triangle S T U$ appears to have the same shape and orientation as $\triangle P Q R$, but rotated 90°, so start by applying the rotation $r_{\left(90^{\circ}, O\right)}$ on the vertices of $\triangle P Q R$.

$r_{\left(90^{\circ}, O\right)}(P)=(-4,1), r_{\left(90^{\circ}, O\right)}(Q)=(-1,4), r_{\left(90^{\circ}, O\right)}(r)=(-2,1)$
Graph the image $r_{\left(90^{\circ}, O\right)}(\triangle P Q R)$. A translation of 1 unit to the right and 5 units down maps the image to $\triangle S T U$.

Therefore, $\left(T_{<1,-5>}{ }^{\circ} r_{\left(90^{\circ}, O\right)}\right)(\triangle P Q R)=\triangle S T U$.

Exercises

Find a congruence transformation that maps $\triangle A B C$ to $\triangle D E F$.

Answers may vary. Sample:
$\left(R_{x \text {-axis }}{ }^{\circ} T_{<5,0>}\right)(\triangle A B C)=\triangle D E F$
2.

Answers may vary. Sample: $\left.\left(r_{\left(270^{\circ}, 0\right.}\right)^{\circ} R_{y \text {-axis }}\right)(\triangle A B C)=\triangle D E F$
\qquad
\qquad
\qquad

Reteaching (continued)

Congruence Transformations

If you can show that a congruence transformation exists from one figure to another, then you have shown that the figures are congruent.

Problem

Verify the SSS Postulate by using a congruence transformation.
Given: $\overline{J K} \cong \overline{R S}, \overline{K L} \cong \overline{S T}, \overline{L J} \cong \overline{T R}$

Start by translating $\triangle J K L$ so that points J and R coincide.

Because you are given that $\overline{J K} \cong \overline{R S}$, there is a rigid motion that maps $\overline{J K}$ onto $\overline{R S}$ by rotating $\triangle J K L$ about point R so that $\overline{J K}$ and $\overline{R S}$ coincide. Thus, there is a congruence transformation that maps $\triangle J K L$ to $\triangle R S T$, so $\triangle J K L \cong \triangle R S T$.

Exercises

3. Verify the SAS Postulate for triangle congruence by using congruence transformations.

Given: $\angle R \cong \angle X, \overline{R S} \cong \overline{X Y}, \overline{S T} \cong \overline{Y Z}$
Prove: $\triangle R S T \cong \triangle X Y Z$
Answers may vary. Sample: Since $\overline{R S} \cong \overline{X Y}$, translate $\triangle R S T$ so $\overline{R S}$ coincides with $\overline{X Y}$. Then reflect $\triangle R S T$
 across $\overline{X Y}$ to complete the transformation.
4. Verify the ASA Postulate for triangle congruence by using congruence transformations.

Given: $\angle A \cong \angle J, \angle B \cong \angle K, \overline{A B} \cong \overline{J K}$
Prove: $\triangle A B C \cong \triangle J K L$
Answers may vary. Sample: Translate $\triangle A B C$ so that points C and L coincide. Then rotate $\triangle A B C$ about point L
 until $\overline{A B}$ and $\overline{J K}$ coincide.

